Modernisierung der Francis-Turbinen HPP-Hirfanli / Türkei

Von der CFD-Analyse und dem hydraulischen & mechanischen **Design-Review bis zum Modellversuch**

Kerscheckstrasse 41 A-8073 Vasoldsberg Tel.: +43 • 316 • 393188 http://www.JabergundPartner.com E-Mail: Helmut.Jaberg@JabergundPartner.com

Turkish Electromechanic Industries Inc. Camlıca Mahallesi 145. Sokak No:16 Yenimahalle ANKARA TÜRKİYE / Türkey

Ausgangsituation

- März 2022: Beauftragung einer Modernisierungsstudie für die Kraftwerksanlage HPP Hirfanli / TR durch TEMSAN
- - > Optimierung des hydraulischen Designs
 - Mechanischer Berechnung
 - Basic Design
- Optimierung für H = 55 65 m und Q = 40 60 m³/s
- Abschließend: Abnahme im Zuge eines Modellversuchs

• Wirkungsgradziel, gewichtet: 93.5%

Net head	H _{NET}	60	m
Flow rate	Q _{MAX}	61	m³/s
Rotational speed	n	187,5	rpm
Ratio BEP to max flowrate	Q _{BEP} /Q _{MAX}	90%	%
Spec Speed, BEP	n _{q,BEP}	64,44	rpm
Efficiency acc. type plate	Efficiency	92%	%
Hydraulic power	PHYDRAULIC	35,87	MW
Shaft power turbine	P _{SHAFT}	33,00	MW
Spec. speed, P _{max_kw}	n _{S,Pmax}	203,97	rpm
Shaft power acc. type plate	N	44000	PS
Shaft power acc. type plate	N	32,36	MW
Spec. speed, P _{max_PS}	n _{S,Pmax}	235,5	<mark>rpm</mark>
Runner diameter	D _{2a}	3,225	m
Kin. viscosity	ν	1,00E-06	[-]
Reynolds no.	Re	1,02E+08	[-]
Number runner blades	Z _{RUNNER}	13	#
Number guidevane blades	ZGUIDEVANE	24	#

Spezifische Schnellläufigkeit n_g:

Ausgangsituation

- Lage: HPP Hirfanli liegt an einem Stausee am Fluß Kızılırmak (südöstlich von Ankara)
- Bauzeit: 1953 1959
- 4 Francis-Turbinen \rightarrow Hersteller der ersten 3 Turbinen: English Electric Company (Inbetriebnahme 1960)

 \rightarrow 4. Turbine: hergestellt von Turkey Electricity Corporation (Inbetriebnahme 1983)

Kraftwerksbegehung essentiell für Rehab-Projekt

- Gespräche mit Betriebspersonal geben Aufschluss über Betriebsweise / Erfahrung
- Sichtung von Fotomaterial aus Bauzeit
- Auffindung bis dato unbekannter Zeichnungen
- Erste Eindrücke vom Zustand des Laufrads

2-teilige Laufschaufeln

Schäden im Bereich Außenkranz

Kraftwerksbau, Mai 1957

Türkisches Laufrad ~ 1980

Modernisierung – KW Hirfanli

4-

Hauptabmessungen der Turbine zu groß gewählt!

- Studie der Turbinendimensionen auf Basis der Design-Anhalte von de Siervo et al.
- Für den angedachten Betriebsbereich ist Turbine (v.a. Laufrad und Leitapparat) ~ 10% zu groß!
- Meridianschnitt deutet auch auf größeres n_q hin
- Anspruchsvolles Ziel:

Neues Laufraddesign, um Bestpunkt in

Bereich Q = $40 - 60 \text{ m}^3/\text{s}$ zu verschieben!

Specifications	Data	Unit			
Rated turbine head H _{rated} :	60.00	m	ì		
Maximum flow rate Q _{max} :	60.00	m³/s			
Flow rate at Best Efficiency Point Q _{BEP} :	54	m³/s	j		
Assumption of η at Q_{Max} :	0.92	-			
Rated max. turbine power output P _{Tu,rated} :	32425.7	kW			
Rotational speed of turbine n [U/min]:	187.5	rpm			
Spez. Schnellläufigkeit n _q [U/min]:	63.9	rpm			
Spez. Schnellläufigkeit n _s [U/min]:	202.2	rpm			
Calculation of runner diameter and suction head	0.015			HPP Hirfanli	Percenta
Non-dimensional circumferential velocity k _u :	0.815	-	•		
Runner diameter at runner outlet D _{3:}	2.881	m	J.	3.250	1.13
Thoma number σ_{Plant} (accord. to "de Siervo"):	0.134	-			
Suction head H _s at Q _{max:}	1.06	m			
Main runner dimensions					
Runner diameter at runner inlet (hub side) D_1 :	2.499	m	ì	2.750	1.10
Runner diameter at throat D ₂ :	2.779	m	ļ	3.103	1.12
Total height of runner H (=H ₁ +H ₂):	1.411	m		1.361	0.96
Main dimensions of the distributor Height of guide vanes I [m]:	0.667	m	1	0.765	1.15
Pitch circle diameter of guide vanes H [m]:	<u>3.441</u>	m	j	3.657	1.06
Diameter at the inlet of the distributor G [m].	3 940	m		4 190	1.06

Vorgehensweise bei Modellierung & Simulation

- 3D-CAD Modelle auf Basis von 2D-Zeichnungen und 3D-Scans
- Erstellung von Rechennetzen f
 ür die Komponenten: Spirale (inkl. St
 ützschaufeln), Leitapparat, Laufrad, Saugrohr (inkl. St
 ützwand) und Unterwasser.
- RSR-Strömung analytisch berechnet
- Stationäre & instationäre einphasige CFD-Simulation mit ANSYS CFX V18
- Modellierungstiefe:
 - Einfaches Ein-Kanal-Modell zur Optimierung von Laufrad & Leitschaufeln
 - Volles 360° CFD-ModelI für finale Simulationen & Kennfeldberechnung
- Simulation mit unserem Rechencluster (8 48 Kerne je Betriebspunkt)

-6-

Rekonstruktion des Original-Laufrads war nicht möglich

-7-

Rechennetzgröße bis zu 42 Mio. Knoten

Auswertung der CFD-Ergebnisse gemäß IEC60193

• Definition von Netto-Fallhöhe und hydraulischem Wirkungsgrad:

• Auswertung des Kavitationsverhaltens mit " σ -Histogram Methode" \rightarrow oftmaliger Abgleich mit Modellversuch

Erste CFD-Ergebnisse: η_{opt} bei zu großem Durchfluss!

- Simulationen zur Optimierung mit einfachem CFD-Modell bei H = 60 m
- Zu Beginn: Studie von 3 Designs

FAZIT: Massive Designanpassung f
ür Q_{Opt} = 50 – 55 m³/s notwendig!

Maßnahmen zur Optimierung des Laufraddesigns

- Deutliche Erhöhung des Umschlingungswinkels
- Minimierung des Austrittswinkels
 - \rightarrow An Außenkranz lediglich β_a = 7°!
- Beibehaltung der Kontur des Außenkranzes
- Verengung der Nabenkontur

R - coordinate [mm]

Finales Laufraddesign: Druckverteilung im Bereich des Bestpunkts bei H = 60 m

-11-

Finale Ergebnisse: Wirkungsgradziel sogar überschritten!

Simulationen mit vollem 360° CFD-Modell zur Erstellung des Kennfelds • Radseitenraum-Verluste: 1 Prozentpunkt bezogen auf η_{opt} **Bestpunkt:** η_{opt} = 95.1% bei H = 65 m und Q = 57.5 m³/s • 120 84.0 115 88.0 110 36800 86.0 105 15 0 88.0 100 90.0 76.0 90.0 95 91.0 91.0 92.0 90 93.0 85 94.0 Gewichteter Wirkungsgrad 80 94.5 Net Head H [m] 75 gem. CFD: 93.6 % 70 95:1 65 60 76.0 Leistungsgrenze Generator 55 94.0 93.0 50 92.0 72.0 90.0 45 68.0 88.0 Garantiebereich 40 60.0 35 50.0 40.0 30 Full-model CFD-Simulation HPP-Hirfanli: Eta, hydr. for PT-Turbine 20.0 25 incl. the RSR-losses 0.0 **Durchbren**pkurve with FINE meshes 15 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 Discharge Q [m³/s]

-12-

Instationäre CFD zur Prognose der Teillast-Phänomene

Modernisierung - KW Hirfanli

-13-