

Hydroakustische Optimierung der Malta-Hauptstufe – Schallreduktion durch Verstimmung der RSI-Anregung

Praktikerkonferenz Graz | A. Lechner, B. Hübner, M. Giese, P. Campero | 2023-09-12/13

- 01 Projektübersicht
- **02** Hydraulische Optimierung der Speicherpumpe
- **03** Hydroakustische Analyse und Vibrationen an der Druckrohrleitung
- 04 Messung von Druckpulsation und Schallemission

Pumpenmodernisierung Malta-Hauptstufe Ausgangssituation

Kraftwerk Rottau (Originalzustand)

H = 1100 m

- 4 x 220 MVA Generatoren 500 U/min
- 2 x 145 MW 4-stufige Speicherpumpe
- 2 Ternäre Sätze mit hydraulischem Anfahrwandler

Kraftabstieg

- ca. 21 km Triebwasserstollen
- L = 1800 mfreiliegender Druckschacht
- 2 x DN 2600 / DN 2550 / DN 2500
- Hochdruck-Verteilrohrleitung freiliegend

Quelle: Verbund

4 x 180 MW 6-düsige Pelton-Turbine

Pumpenmodernisierung Malta-Hauptstufe Ausgangssituation

- Hohe Lärmemissionen entlang der beiden freiliegenden Druckrohrleitungsstränge aufgrund von RSI-Druckpulsationen mit einer Laufschaufel-Passierfrequenz von 75 Hz und ihren höheren Oberwellen.
- Problematisch sind die Lärmemissionen bei Pumpbetrieb bzw. hydraulischem Kurzschlussbetrieb.
- Die Anwohner in der Nähe des Kraftwerks Rottau fordern eine Verringerung der Lärmemissionen.
- Durch den Einbau von λ/4-Resonatoren durch den Betreiber konnten die Lärmemissionen deutlich reduziert werden.
- Die Lärmcharakteristik ist sehr komplex und deutet auf eine Vielzahl an Schwingungsparameter hin.

Modernisierungsprojekt Malta-Hauptstufe Pumpenerneuerung und Schallreduktion

Pumpenmodernisierung Malta-Hauptstufe Zielsetzungen

- Finale Lösung der Anrainerproblematik durch weitere Reduktion der Lärmemission an der Druckrohrleitung
- Steigerung der Pumpleistung bei Reduktion der Druckpulsation aus RSI-Anregung
- Erneuerung oder Ersatz der beiden Speicherpumpen
- Detaillierte Konzeptdarlegung samt Machbarkeitsstudien zur Lärmreduktion in Angebotsphase
- Knapper Terminplan

Hydraulische Optimierung Speicherpumpe

Hydraulische Optimierung der Speicherpumpe Herausforderungen

Pumpleistung und Wirkungsgrad

- Leistungssteigerung P ≥ 28 %
- Limitierung Motor-Generator und Anfahrwandler P ≤ 35 %
- Verbesserung Wirkungsgrad
- Saugrohr, Spirale und äußeres
 Pumpengehäuse unverändert

Druckpulsation aus RSI

- Reduktion $-\Delta p \ge 60 \%$
- Vermeidung Phasenresonanz Hinweis:

Eine Leistungssteigerung von +35% der bestehenden Geometrie würde die RSI-Druckpulsation um 80% erhöhen.

VOITH

Schallabstrahlung an der Druckrohrleitung

- Problemzone 80 Hz-Terzband
- Reduktion $-\Delta L_p \ge 8 \text{ dB bzw.}$
- Differenz zu Nachbar-Terzband $\Delta L_p \leq 3 \text{ dB bzw.}$
- Differenz zu Ruheschallpegel $\Delta L_p \leq 3 \text{ dB}$

Hydraulische Optimierung der Speicherpumpe Laufradentwicklung

Ergebnis intensiver numerischer Simulationen

- Änderung LR-Schaufelanzahl von 9 auf 10
- vorteilhaft f
 ür Leistung und Schallreduktion an der Druckrohrleitung
- nachteilig für Kavitation
- Ausführung der untersten Stufe mit 9 LS
- obere Stufen jeweils 10 LS

Modelltest - Messergebnisse

- Homologer Pr
 üfaufbau von Saugrohreintritt bis Spiralenaustritt inkl. aller 4 Stufen
- Pumpleistung bei H_{rat} = 1100 m: P = 191 MW (bisher 140 MW)
- Leistungssteigerung ca. +35%
- Kavitationsanforderung erfüllt
- stabile Pumpencharakteristik

Hydraulische Optimierung der Speicherpumpe Laufradentwicklung

Druckpulsation aus RSI

- Anregung entsteht im schaufellosen Raum jeder Stufe
- k = 4 bzw. k = 3 für 9 LS / 10 LS
- Instationäre CFD und Auswertemethoden für RSI-Thematik sind für mehrstufige Speicherpumpen ein Forschungsbereich
- Druckpuls-Interaktion der verschiedenen Stufen ist abhängig vom k-Mode
- Optimierung der obersten Stufe hinsichtlich Druckpuls

Modellbildung für RSI Vergleiche

- Modellierung der obersten Stufe mit erweitertem Einlauf- und Auslaufbereich ohne Spirale
- Referenzfläche für Druckpulsauswertung im Traversenkanal
- Zeitverlauf und FFT-Darstellung zur Evaluierung der Ausbreitung der Druckpulsation in Spirale und Druckrohrleitung
- Parameterstudien und Optimierung

Optimierung der RSI-Druckschwankungen Malta Bestand und Neuentwicklungen

Zeitverläufe der CFD-Druckschwankungen

Amplitudenspektren der CFD-Druckschwankungen

VOITH

Optimierung der RSI-Druckschwankungen Ergebnisse der Neuentwicklung

- Es wurde ein sehr umfassendes, numerisches Untersuchungsprogramm zur bestmöglichen Prognose der RSI-Druckpulsation im Rahmen der Modellentwicklung unter hohem Zeitdruck durchgeführt.
- Der Druckpuls f
 ür die Laufschaufel-Passierfrequenz (1. Harmonische) wurde f
 ür die beiden Neuentwicklungen um mehr als 60% bzw. um 80% bei 35% Leistungssteigerung reduziert. Die Reduktion f
 ür die h
 öheren Harmonischen (2. / 3. / 4.) liegt etwas h
 öher.
- Die Validierung der Druckpulsation erfolgte am Modelltest bei Voith am Gesamtmodell der 4stufigen Speicherpumpe. Alle vorhandenen Druck-Auswertepunkte des Prototoyps / CFD-Modells wurden im Modell realisiert und auf Gültigkeit validiert.
- Über den erweiterten Betriebsbereich von WS,Hmax bis WS,Hmin liefert die Modellmaschine nahezu konstante Druckschwankungen, welche mit der Prognose aus CFD-Entwicklung übereinstimmen.
- Die Idee, Druckpulsationen bzw. hydroakustische Schallanregungen anstatt am hydraulischen Modelltest hier im "Luftversuch" messtechnisch zu erfassen, wird von Voith nicht bestätigt.

Hydro- und vibroakustische Analyse Druckrohrleitung

Hydroakustische Analyse Druckrohrleitung Anlagesituation und Beobachtungen

Schallabstrahlung - Druckrohrleitung

- Hauptproblem ist der tieffrequente Schall aufgrund RSI-Anregung der Grundharmonischen = 75 Hz LS-Passierfrequenz (80 Hz-Terzband)
- Druckrohrleitung wirkt als Linienschallquelle
- Es gibt punktuelle Schallverstärkungen, z.B. an Festpunkten, Rohrleitungsaufständerung im Bereich der Eisenbahnquerung
- Höhere Frequenzbänder sind auch sichtbar (2. / 3. / 4.)

Schallabstrahlung – Hochdruck-Verteilrohrleitung

- Sehr komplexes Schallabstrahlungsverhalten
- Wechsel von maximaler Verstärkung der RSI-Frequenzen, z.B. Einmündung Pumpensteigleitung in freiliegende Verteilleitung sowie maximaler Auslöschung bei Schrägkrümmer
- Die RSI-Drehharmonischen sind punktuell sehr laut bei Pumpbetrieb.
- Vermutung von stehenden Wellen im Rohrsystem

Hydroakustische Analyse Druckrohrleitung Schallentstehung und Ausbreitung

- Es wurde ein sehr umfassendes, numerisches Untersuchungsprogramm zur hydro-akustischen und vibro-akustischen Analyse von Verteilrohrleitung und Druckrohrleitung durchgeführt.
- RSI-induzierte Druckpulsationen durch 1. / 2. / 3. / 4. Drehharmonische, Entstehung im schaufellosen Raum der obersten Pumpenstufe
- Ausbreitung über Spirale, Kugelschieber, Pumpensteigleitung, Verteilrohrleitung in eine der freiliegenden Druckrohrleitungen
- Es wurde angenommen, dass hydroakustische Resonanzen mit teilweise stehenden Wellen bis zum oberen Ende der 1800 m langen, freiliegenden Druckrohrleitung existieren, wo die beiden Stränge in den gemeinsamen Triebwasserstollen zusammenführen.
- Schwingungsanregung von Rohrwandung und Fundamente, welche als Schallquellen f
 ür die Schallabstrahlung in die Umgebung fungieren.

Hydroakustische Analyse Druckrohrleitung VOITH Schallreduktion durch $\lambda/4$ -Resonator vs. stehende Wellen

- Kundenseitiger Einbau von Viertel-Wellenlängen-Resonatoren am Spiralenauslauf der beiden Speicherpumpen (2017).
- Signifikante Reduktion der tieffrequenten Lärmemissionen bei 75 Hz (1. Drehharmonische).
- Jahreszeitliche Variationen von Wassertemperatur und Schallgeschwindigkeit verändern die Resonatorwirkung.
- Neben den teilweise stehenden Wellen, ist die Änderung der Resonatoreffektivität ein weiteres Indiz f
 ür die Existenz von hydroakustischen Resonanzen im Wasserweg (VTL, DRL).
- Bemerkenswert sind Beobachtungen von extrem hohen Schallabstrahlungen der RSI-Frequenzen vor Resonatoreinbau an weit entfernten Stellen vom Krafthaus.
- Der traditionelle Ansatz von gewöhnlich abklingenden Druckpulsationen vom Krafthaus in Richtung Oberwasser (in Richtung der Strömung) war aufgrund der vorhandenen Beobachtungen unplausibel.
- Es mussten Berechnungsmodelle neu entwickelt werden, welche obige Parameter erfassen.

Hydroakustische Resonanz

VOITH

Verteilung der Druckamplitude in Rohr oder Laufradkanal in Abhängigkeit der Wellenlänge

Hydroakustische Analyse Druckrohrleitung Berechnungsparameter

Schallgeschwindigkeit und Dämpfung

- präzise Definition ist erforderlich
- c = 1000 bis 1500 m/s
- Abhängigkeit von Temperatur, Luftanteil, Nachgiebigkeit des Rohres
- Dämpfungsannahmen des Rohres erfordern Kalibrierung
- Verfügbar waren Vibrationsmessungen zur Kalibrierung
- Beispiel Sensitivitätsanalyse:

f = 75 Hz / c = 1200 m/s / λ = 16 m

Unterschied von λ /4 = 4 m ist ausreichend, um das hydroakustische System von Resonanz in Auslöschung zu verändern (0.2% der Rohrlänge 1800 m).

• Dieser Sachverhalt deckt sich mit der Beobachtung, dass Temperaturschwankungen den Lärm verändern.

Software

- Anwendung 1-dimensionaler Berechnungstools f
 ür Drucksto
 ßberechnungen wie z.B. SIMSEN ist nicht zielf
 ührend.
- Hydroakustisches Verhalten von Bifurkation, Verteilleitung muss in Abhängigkeit der RSI-Frequenzen modelliert werden.
- 3D-Schwingungsformen der wassergefüllten Druckrohrleitung müssen berücksichtigt sein.

Druckschwankungs-Messung Sensor-Positionen

Druckmessstelle Druckmessstelle

Beschleunigungsm.

(Rückseite)

Hydroakustische Analyse Druckrohrleitung Modellierung

- Akustische Finite-Element-Analyse
- Hohe Netzdichte
- Modellierung mit / ohne Resonator
- Rotierende Schwingungsanregung im schaufellosen Raum 75 Hz-Anregung mit k = 9 83.3 Hz-Anregung mit k = 10
- Normierte Anregungsamplituden zur besseren Vergleichbarkeit der Systemantwort
- Kalibrierung der Druck-Randbedingungen
- Modellgrenze der Verteilleitung: Kugelschieber Turbineneinläufe sowie Beginn Schrägschacht

Akustische FEA der Verteilleitung

Akustische Eigen-Moden Original-Speicherpumpe und Modifikation

Original k = 9 / ohne Resonator / f = 75.0 Hz

Neuentwicklung k = 10 / ohne Resonator / f = 83.3 Hz

Hydroakustische Analyse Druckrohrleitung Erkenntnisse und Schlussfolgerungen

Das vorhandene Druckschwankungsbild sowie das Verhalten der Schallabstrahlung konnten durch ein System an Berechnungsprozessen weitgehend **realitätsnah** wiedergegeben werden:

- Effekte der bislang "stochastischen" Schwankungen in der Schallabstrahlung können auf technischer Basis bei geringer Parameterstreuung (z.B. Temperatureffekt an Schallgeschwindigkeit, Frequenzvariation, axiale bzw. transversale Nachgiebigkeit der Gleitlagerbedingungen am Rohr) simuliert werden.
- Einflüsse von stehenden Wellen sind sichtbar.
- Anregungsfrequenzänderung von 75 Hz auf 83.3 Hz reduziert die hydroakustische Druckanregung im Schrägschacht DN 2500 aufgrund des günstigeren Interferenzverhaltens (VTL-Geometrie) für stehende Welle bei identer Anregungsamplitude.
- Feinjustierung des Resonators ist rechnerisch möglich.
- Überlagerung der normierten akustischen Modelle mit Druckanregungsamplituden aus instationärer CFD führt zu realistischen Ergebnissen an der Verteilrohrleitung. Es ergibt sich eine gute Übereinstimmung zu den gemessenen Druckamplituden.

Vibroakustische Analyse Druckrohrleitung Modellierung

Freiliegende Druckrohrleitung

- FEA-Modell für Rohr und Auflagerringe
- Parametriertes Modell für drei Rohrabschnitte
- L = 3 x 18 m
- Wanddicken 64 bis 48 mm
- mit Wasserfüllung als akustische Elemente (added-mass effects)
- nicht-reflektierende Randbedingungen an Rohrenden
- Berücksichtigung von Wasserdruck
- harmonische Anregung durch RSI-Druckamplituden

Modell-Kalibrierung mit Messdaten

- Kalibrierung anhand detaillierter Messungen von Geschwindigkeitsamplituden entlang der Druckrohrleitung, L = 18 m und t = 62 mm
- 37 Messpunkte über L
- 8 Messpunkte über halben Umfang (Unterseite)
- RMS-Werte (root-mean-square)
- Nach Abzug von Grundrauschen ergibt sich eine gute Übereinstimmung mit 75 Hz RSI-Anregung.

Kompressible Harmonische Analyse (HRA) mit Fluid-Struktur-Interaktion (FSI)

Radialverschiebungen: L = 18 m, t = 62 mm

Druckpulsation und Verformung

Hydro-elastische Schwingung und Schallemission HRA und FSI für Druckrohrleitung

Ausbreitung Druckpulsation

Rohrschwingung und Schallabstrahlung

Vibroakustische Analyse und Schallemission Prototypen-Messung für Druckrohrleitung

1.5 Wellenlängen am Rohrabschnitt zwischen Ringauflager

3 Wellenlängen über den Umfang

Vibroakustische Analyse und Schallemission Erkenntnisse und Schlussfolgerungen

- Das Verhalten der Schallabstrahlung konnte durch die erweiterte Fluid-Struktur-Interaktions-Berechnung (FSI-FEA) zutreffend simuliert werden.
- Die Eigenformen / Schwingungsformen der Schallabstrahlung stimmen mit der Anlagenmessung überein.
- Die Schallabstrahlung am Rohr folgt der Anregung aus RSI-Druckpulsation.
- Im unteren Bereich der Druckrohrleitung finden sich Wanddicken mit Resonanzüberhöhung bei 75 Hz-Anregung (Orte mit max. Schallabstrahlung).
- Die FSI-FEA f
 ür 83.3 Hz-Anregung zeigt eine geringere Anzahl an Resonanzen infolge Wanddickenabstufung im Betrachtungsraum bis WP10 bis FP8.
- Anregungsfrequenzänderung von 75 Hz auf 83.3 Hz reduziert das vibroakustische Resonanzverhalten im Schrägschacht DN 2500 bei identer Anregungsamplitude.

Messung von Druckpulsation und Schallemission

Southern Street, and share the second second

Pumpenmodernisierung Malta-Hauptstufe Druckpuls- und Schallreduktion

- Der Druckpuls bei 75 Hz ist im oberwasserseitigen Bereich durch die Frequenzänderung eliminiert, bei 83.3 Hz liegt der Druckpuls deutlich unterhalb der Garantie.
- Durch die erneuerte Pumpe mit Resonator wurde an den relevanten Messpunkten f
 ür alle 4 Terzb
 änder (80 / 160 / 250 / 315 Hz) eine Schallpegelreduktion auf das Niveau der Nachbarterzb
 änder inklusive zul
 ässiger
 Überschreitung von 3 dB erreicht (1 Ausnahme, allerdings Pegelreduktion erf
 üllt).
- Das Grundrauschen der Anlage bleibt trotz +35% Leistungssteigerung geringfügig unter dem ursprünglichen Niveau.
- Die Schallpegelreduktion des Drehklanges liegt f
 ür alle relevanten Frequenzen und Messpunkte zwischen 16.2 dB und 31.6 dB. Verglichen werden die Schallpegel bei 75 Hz (alt) und 83.3 Hz (neu) sowie die jeweiligen h
 öheren Harmonischen.
- Voith Hydro erfüllt neben den hydraulischen Garantien der Speicherpumpe die Anforderungen zur Druckpuls- und Schallpegelreduktion an der Anlage. Es konnte auf den Einsatz von Resonatoren verzichtet werden.

Schallemission Freiliegende Druckrohrleitung

VOITH

Schallpegel für Terzbänder in 25m-Entfernung zur Rohrleitung vor (ORANGE) und nach Umbau (GRÜN)

Vielen Dank! Thank you!

VOITH

Kontakt: Andreas Lechner Senior Expert – Hydraulic Steel Structures Tel. +49 7321 37 8869 andreas.lechner@voith.com

