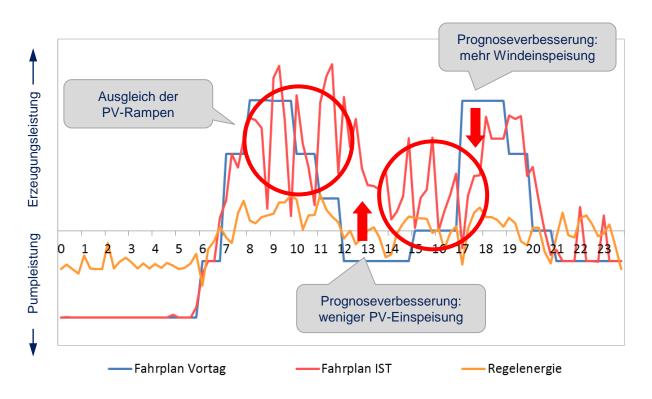

Entwicklungen am Stromgroßhandelsmarkt

am Beispiel Marktgebiet Deutschland (bis 2018 DE/AT) Russland-Ukraine-Krieg Marktverwerfungen 250 Corona **Historische Spotpreise** Wind- und PV-Ausbau €/MWh Ölpreis-Atommoratorium Deutschland explosion 150 Wirtschaftskrise 100 Erholung CO₂-Preise **Terminpreise** 25.04.2023 50 Base —Peak

Veränderung Strompreisprofil


am Beispiel Marktgebiet Deutschland

- Starke Abhängigkeit des Tagesprofils von Wind- und PV-Einspeisung
- Verschiebung der höchsten Stundenpreise an den Tagesrand

Beispiel für den Einsatz eines Pumpspeicherkraftwerkes

Der Einsatz von Speicher- und Pumpspeicherkraftwerken ist bereits heute durch Wind und Sonne bestimmt.

Energiewende: CO₂-Ziele und Maßnahmen

"Green Deal" der EU-Kommission mit neuen CO₂-Zielen: 2030 -55% gegenüber 1990 (statt -40%) und 2050 "Klimaneutralität" (statt -80%)

EAG	2021	→	2030
	2,5 GW	+ 1,0 GW/a	12 GW
	3,5 GW	+ 0,4 GW/a	7 GW

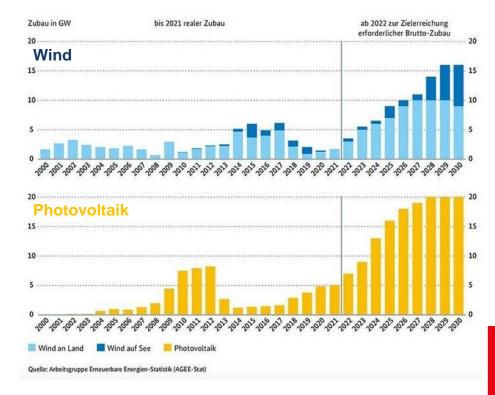
Ziele Österreich

- 100% Ökostrom (bilanziell) 2030 (2018: 73%)
- 81 TWh Ökostromerzeugung
- 1 Mrd. EUR/a Förderung
- Klimaneutralität 2040

EEG	2021	→	2030
TO.	59 GW	<u>+ 4,8 G</u> W/a + 22 GW/a	100 GW 215 GW
	63 GW	± 3,1 GW/a* _ + 11 GW/a	71 GW 145 GW

^{*} Netto-Zubau 1,6 GW

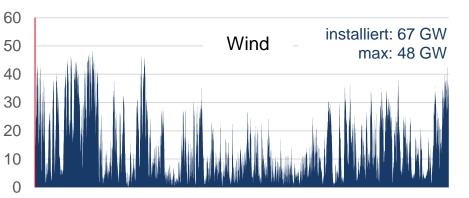
Ziele Deutschland

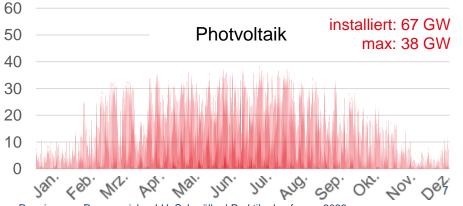

- 65% Ökostromanteil 2030 (2018: 40%)
- Klimaneutralität 2045
- Kernenergieausstieg bis 2022
- Kohleausstieg bis spätestens 2038
- Osterpaket 2022

Energiewende: Ausbau erneuerbare Energien

Beispiel Deutschland

- Ausbauziele im Vergleich zu historischen Ausbauraten sehr ambitioniert.
- Insbesondere im Bereich Wind-Onshore teils große Schwierigkeiten durch Genehmigungsverfahren.
- Politik versucht durch Ausweisung von Vorrangflächen und Verfahrensbeschleunigungen gegenzusteuern.

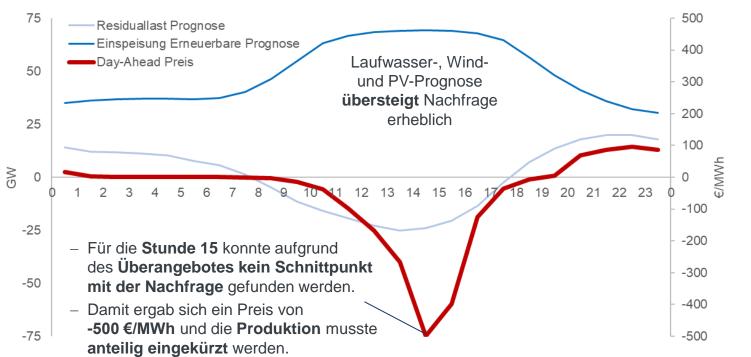




Herausforderungen durch ein erneuerbares Energiesystem

Wind- und PV-Erzeugung am Beispiel Marktgebiet Deutschland im Jahr 2022

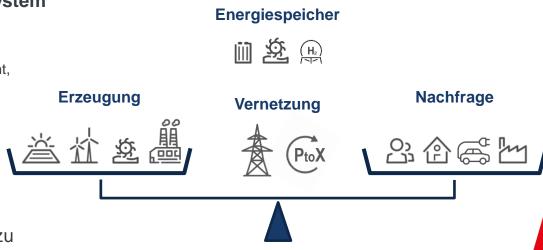
 Wind- und PV-Erzeugung schwanken über das Jahr erheblich.



- Max. Summenerzeugung: 59 GW
- Min. Summenerzeugung: 0,8 GW

Herausforderungen durch ein erneuerbares Energiesystem

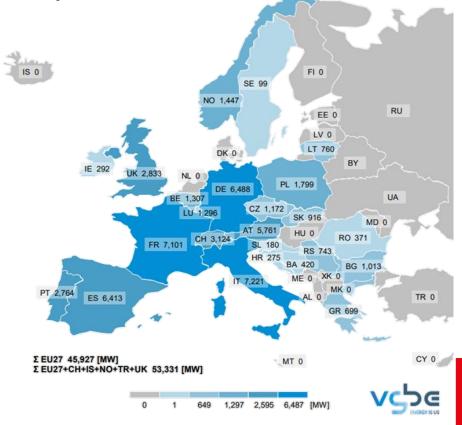
Preiswirkung Windkraft und Photovoltaik am Beispiel Marktgebiet Deutschland 02.07.2023



Nachfrage konnte zu 95% aus erneuerbaren Energien gedeckt werden.

Anforderungen an ein erneuerbares Energiesystem

- Ein erneuerbares Versorgungssystem erfordert Nutzung aller
 Flexibilitätsoptionen
 - Angebotsseite (Einspeisemanagement, steuerbare Erzeugung)
 - Nachfrageseite (Lastmanagement)
 - Vernetzung (überregionaler Netzausbau, Sektorkopplung)
 - Energiespeicher (Batterien, Pumpspeicher, Wasserstoff)
- Um ökologisch/ökonomische
 Ineffizienzen durch Abregelung zu vermeiden, Bedarf es ausreichend
 Übertragungs- und Speicherkapazitäten



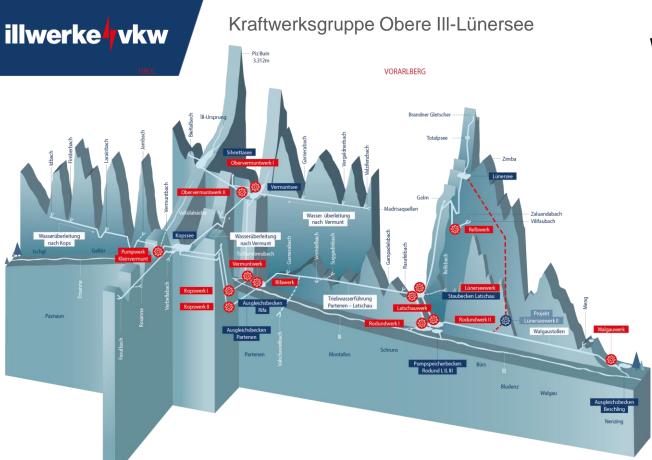
Bedeutung Pumpspeicherung in Europa

Installierte Leistung

- Länder mit höchster PSKW-Kapazität:
 Italien, Frankreich, Deutschland,
 Spanien, Österreich
- In Summe ~50 GW installierte
 PSKW-Leistung in Europa
- Die alpine Pumpspeicherung ist der größte Flexibilitätsanbieter in Mitteleuropa.

illwerke vkw AG

Wasserkraft | Versorgung und Dienstleistung | Energienetze | Tourismus

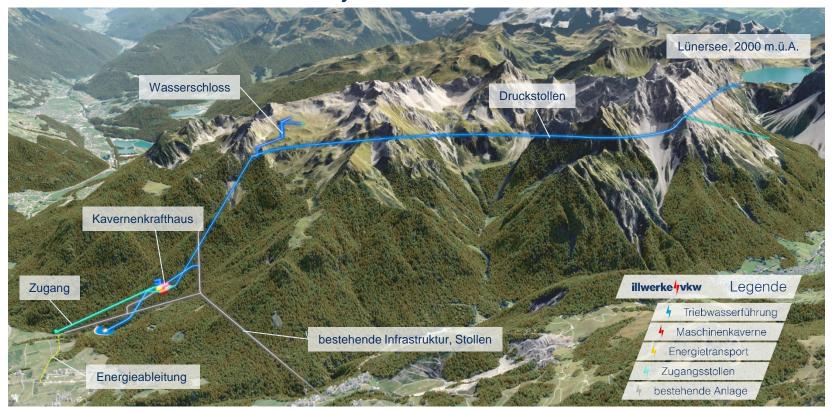


Gesamtleistung Wasserkraft illwerke vkw

2.500 MW

Turbinenleistung

1.400 MW


Pumpleistung

3.300 GWh

Regelarbeitsvermögen pro Jahr (inkl. Pumpspeicherung)

Lünerseewerk II – eine Projektidee der illwerke vkw

Fundamentaler Wandel der Stromversorgung

- Die derzeitige Marktsituation spiegelt den Übergang von einem konventionellen zu einem nachhaltigen Versorgungssystem wider und wird von massiven Marktverwerfungen überlagert.
- Der rasche Ausbau von Windkraft und Photovoltaik hat den wohl fundamentalsten Wandel seit Beginn der Stromversorgung ausgelöst. Der Wunsch die Importabhängigkeit zu reduzieren hat dieser Entwicklungen einen zusätzlichen Schub verliehen.
- Der effiziente Ausgleich zwischen der zunehmend schwankenden Erzeugung und der nach wie vor weitgehend unelastischen Nachfrage ist eine der zentralen Herausforderungen zur Sicherung der Stromversorgung.
- Mit unseren Speicher- und Pumpspeicherkraftwerken stellen wir uns dem Wettbewerb um die Bereitstellung von Flexibilität und Speicherkapazität.
- Mit dem Lünerseewerk II wollen wir einen weiteren Beitrag zum Gelingen der Energiewende leisten.